
Porting the NOAA global weather forecast system (GFS) to the cloud

Daniel Abdi, Chris Harrop, Jebb Stewart, Mark Govett*
CIRES, NOAA*

We ported the NOAA Global Forecast System (GFS) that is often run on-
premise to different Cloud Computing Platforms (CCPs) such as AWS and
GCP. First, the application is containerized using Docker and Singularity for
ease of portability and reproducibilty. We demonstrate that using
containers does not affect performance significantly as compared to bare-
metal runs. Singularity does not pose the security risks of Docker and also
offers better integration with job schedulers such as SLURM. One downside
we found regarding portability of multi-node runs is the need to match the
MPI library on the host with that inside the container, including drivers used
for InfiniBand. GFS uses a workflow management system called rocoto that
pauses additional complications when used along with containers. The
scripts that rocoto calls contain slurm commands, however, our containers
do not have SLURM inside them. We solve this problem by writing the
SLURM commands into a file, and then a daemon process executes the
commands on the host and writes back the output to a file.

Abstract
1) Currently, the GFS code-base can only be compiled with proprietary Intel
compilers, so we faced the prospect of making it compile with free GNU
compilers that took a significant portion of our time. Eventually though the
GNU build turned out to be 3x slower so the Intel build must be used for
production.

2) Testing out various MPI libraries (IntelMPI, MPICH, MVAPICH, OpenMPI).
Having this ability is important because running docker/singularity
containers on multi-nodes require that the host and container MPI libraries
match

3) GFS has many support libraries (around 10 NCEPlibs, ESMF, NETCDF,
CRTM, GEMPAK etc). There is no “module load” to save us from compiling
these libraries ourselves

4) Multi-node runs with Singularity as

mpirun -np 264 singularity exec fv3_latest.sif /opt/fv3_1.exe

5) Workflow is managed with rocoto which generates a script for a batch job
which in-turn invoke SLURM jobs that we replaced with singularity exec calls
as in (4). The script that rocoto calls have SLURM commands in them,
however, we do not have SLURM installed inside our containers. To solve
this problem, we write the commands to a file, which are then read by a
daemon process on the host, that executes the SLURM commands on the
host and writes back the results. This approach needs minimal
modifications to the code as show below, where we call pre- and post- job
scripts to initialize and kill the daemon process on the host.

{{
#! /bin/sh
#SBATCH --job-name=c48_gfspost001_00
#SBATCH --account=gsd-hpcs
#SBATCH --qos=batch
#SBATCH --nodes=1-1
#SBATCH --tasks-per-node=12
#SBATCH --cpus-per-task=1
#SBATCH -t 06:00:00
#SBATCH -o /scratch2/BMC/gsd-
hpcs/NCEPDEV/global/noscrub/Daniel.Abdi/fv3gfs/comrot/c48/logs/20180
82700/gfspost001.log
#SBATCH --export=ALL
…..
$GFS_DAEMON_RUN; $GFS_SING_CMD /opt/global-
workflow/jobs/rocoto/post.sh; $GFS_DAEMON_KILL

….
}}

The SLURM commands inside the job scripts are wrapped with code that
writes commands to a file, and then wait for execution of the job to finish.
This way we have the job scheduler SLURM and workflow manager rocoto
installed on the host, while the rest of the code resides inside a container.

Methodology

1) Performance comparison with bare-metal runs

C96 problem, using 6-mpi ranks, and 3-hrs forecast: almost no cost
associated with using containers

Bare metal: 78 seconds
Within Docker: 83 seconds
Within Singularity: 77 seconds
Host-mpi singularity: 78 seconds

2) Multi-node runs Hera (on-premise) HPC system.

C384 problem, using 264 mpi ranks (216 compute + 48 IO) with 2
threads/core

Bare-metal: 500 sec
INTEL container: 520 sec
GCC container: 824 sec
GCC container no OFED drivers: 2700 sec

3) Google Cloud Platform run

C768 24-hour run completed in about 470s (7.8 min) meeting the 8-min per
forecast day requirement.
C2-standard-60 VMs for all compute and I/O nodes.

4) AWS run using ParallelCluster

Single node results using C5n.18xlarge instances similar to that on Hera
using Skylake processor.
C384 24-hour forecast in about 25 min, which is not that bad given GCC is 2-
3x slower

5) Workflow management with rocoto

Workflow management using containers required only minimal
modifications.

$ rocotostat -v 10 -w c48.xml -d c48.db
CYCLE TASK STATE TIME
201808270000 gfsfv3ic - -
201808270000 gfsfcst SUCCEEDED 19
201808270000 gfspost001 SUCCEEDED 1110

Results

1) We have ported the Global Forecast System to run on different Cloud
Computing Platforms

2) Using containers (Singularity and Docker) offers great portability and
reproducibility of application. We demonstrated that performance using
containers is not significantly impacted, however, there are other challenges
associated with using containers such as:

a) multi-node runs with different MPI libraries
b) integration with existing workflow management tools
c) security issues due to escalated privileges of docker

3) Integration of containers with workflow management and job schedulers
needed some tricks to get working. This problem is due the fact that that
environment within and outside the container are completely isolated,
hence, unless the code, workflow manager and job scheduler are all within
or outside the container, there is going to be problems.

4) Some CCPs provide environments that emulate HPC environments with a
few clicks of buttons (e.g. ParallelCluster). This coupled with use of
containers for the HPC app offers a quick and reproducible environment for
deploying HPC apps to the cloud.

Conclusion

Porting high-performance scientific applications such as GFS to the cloud
often pose major challenges such as requirement of a tightly coupled
system with high-speed interconnect and homogeneous compute-units,
high storage requirements to store the outputs of the model, secure and
efficient network for data ingress and egress, etc.

Containerization
a)Bundling an app with everything it needs to run everywhere exactly the

same way. “Build once, run everywhere”.
b)Docker is industry-standard. Singularity is preferred on HPC systems

because Docker gives escalated privileges to all users of the container
c)Use singularity for deployment and Docker for development.

Motivation and Goals

a) Run GFS end-to-end (pre-processing, forecast, post processing) on the
cloud

b) Extend rocoto to support various cloud computing
platforms (CCPs)

c) Provide containers (singularity/docker) for GFS and its
components for easy deployment to any CCP

d) Evaluate performance of GFS on single and mulit-node runs.

e) Evaluate feasibility of emulating HPC environment in CC e.g.
ParallelCluster from AWS

Introduction

References

1) The Global Forecast System
https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/global-forcast-system-gfs
2) Rocoto workflow manager
https://github.com/christopherwharrop/rocoto

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://github.com/christopherwharrop/rocoto

